Chapter 5: Q6E (page 309)
If\(f'\)is continuous on \((1,3)\), then \(\int\limits_1^3 {f'(v)dv = f(3) - f(1)} \).
Short Answer
The answer is TRUE
Chapter 5: Q6E (page 309)
If\(f'\)is continuous on \((1,3)\), then \(\int\limits_1^3 {f'(v)dv = f(3) - f(1)} \).
The answer is TRUE
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral
\(\) \(\int\limits_{\rm{1}}^{\rm{2}} {\left( {\frac{{\rm{1}}}{{{{\rm{x}}^{\rm{2}}}}}{\rm{ - }}\frac{{\rm{4}}}{{{{\rm{x}}^{\rm{3}}}}}} \right){\rm{dx}}} \)
Evaluate the integral.
\(\int_0^{1/\sqrt 3 } {\frac{{{t^2} - 1}}{{{t^4} - 1}}} dt\).
Find the derivative of the function \({g^\prime }(s)\), using part 1 of The Fundamental Theorem of Calculus and integral evaluation.
\(g(s) = \int_5^s {{{\left( {t - {t^2}} \right)}^8}} dt\)
Evaluate the integral
\(\int\limits_{{\rm{ - 2}}}^{\rm{0}} {\left( {{\rm{(}}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{4}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{t}}^{\rm{3}}}{\rm{ - t}}} \right)} {\rm{dt}}\)\(\)
Evaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.