Chapter 5: Q6E (page 289)
Evaluate the integral
\(\) \(\int\limits_{{\rm{ - 1}}}^{\rm{1}} {{\rm{t(1 - t}}{{\rm{)}}^{\rm{2}}}{\rm{dt}}} \)\(\)
Short Answer
The value of the integral is\(\)\(\left( {{\rm{ - }}\frac{{\rm{4}}}{{\rm{3}}}} \right)\)
Chapter 5: Q6E (page 289)
Evaluate the integral
\(\) \(\int\limits_{{\rm{ - 1}}}^{\rm{1}} {{\rm{t(1 - t}}{{\rm{)}}^{\rm{2}}}{\rm{dt}}} \)\(\)
The value of the integral is\(\)\(\left( {{\rm{ - }}\frac{{\rm{4}}}{{\rm{3}}}} \right)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integrals.
\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)
Evaluate the integral.
\(\int_{\rm{0}}^{\rm{1}} {\left( {{{\rm{x}}^{{\rm{10}}}}{\rm{ + 1}}{{\rm{0}}^{\rm{x}}}} \right)} {\rm{dx}}\).
To determine the value for \({g^\prime }(x)\) by using the integral evaluation method.
Evaluate the integral.
\(\int_1^2 {\left( {\frac{x}{2} - \frac{2}{x}} \right)} dx\)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{\pi }} {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.