Chapter 5: Q65E (page 307)
If \(f\) is continuous and \(\int_0^4 f (x)dx = 10\), find \(\int_0^2 f (2x)dx\).
Short Answer
The value of the integral is: \(\int\limits_0^2 {f(2x)dx = 5} \)
Chapter 5: Q65E (page 307)
If \(f\) is continuous and \(\int_0^4 f (x)dx = 10\), find \(\int_0^2 f (2x)dx\).
The value of the integral is: \(\int\limits_0^2 {f(2x)dx = 5} \)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral
\(\) \(\int\limits_{\rm{1}}^{\rm{2}} {\left( {\frac{{\rm{1}}}{{{{\rm{x}}^{\rm{2}}}}}{\rm{ - }}\frac{{\rm{4}}}{{{{\rm{x}}^{\rm{3}}}}}} \right){\rm{dx}}} \)
Evaluate the integral by making the given substitution.
\(\int {\frac{{{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{(1/x)}}}}{{{{\rm{x}}^{\rm{2}}}}}} {\rm{dx,}}\;\;\;{\rm{u = 1/x}}\).
Evaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
Find the average value of the function \(f(x) = \frac{1}{x}\) in the interval \({\rm{(1,4)}}\).
Express the following limit as a definite integral:
\(\mathop {lim}\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{{i^4}}}{{{n^5}}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.