Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Alabama Instruments Company has set up a production line to manufacture a new calculator. The rate of production of these calculators after\({\rm{t}}\)weeks is

\(\frac{{{\rm{dx}}}}{{{\rm{dt}}}}{\rm{ = 5000}}\left( {{\rm{1 - }}\frac{{{\rm{100}}}}{{{{{\rm{(t + 10)}}}^{\rm{2}}}}}} \right)\)

calculators/week
(Notice that production approaches \({\rm{5000}}\) per week as time goes on, but the initial production is lower because of the workers' unfamiliarity with the new techniques.) Find the number of calculators produced from the beginning of the third week to the end of the fourth week.

Short Answer

Expert verified

Calculator created between the start of the third week and the end of the fourth week\({\rm{ = 4047}}\).

Step by step solution

01

Given Data.

\(\frac{{{\rm{dx}}}}{{{\rm{dt}}}}{\rm{ = 5000}}\left( {{\rm{1 - }}\frac{{{\rm{100}}}}{{{{{\rm{(t + 10)}}}^{\rm{2}}}}}} \right)\)

\({\rm{5000}}\)per week.

02

Integrating the value.

\(\begin{array}{c}\frac{{{\rm{dx}}}}{{{\rm{dt}}}}{\rm{ = 5000}}\left( {{\rm{1 - }}\frac{{{\rm{100}}}}{{{{{\rm{(t + 10)}}}^{\rm{2}}}}}} \right)\\{\rm{dx = 5000}}\left( {{\rm{1 - }}\frac{{{\rm{100}}}}{{{{{\rm{(t + 10)}}}^{\rm{2}}}}}} \right){\rm{dt}}\end{array}\)

Integrate from \({\rm{2}}\) to \({\rm{4}}\)because the start of the third week is the same as the end of the second.

\(\begin{array}{c}\int_{{\rm{x(2)}}}^{{\rm{x(4)}}} {\rm{d}} {\rm{x = }}\int_{\rm{2}}^{\rm{4}} {\rm{5}} {\rm{000}}\left( {{\rm{1 - }}\frac{{{\rm{100}}}}{{{{{\rm{(t + 10)}}}^{\rm{2}}}}}} \right){\rm{dt}}\\{\rm{x(4) - x(2) = }}\int_{\rm{2}}^{\rm{4}} {\rm{5}} {\rm{000}}\left( {{\rm{1 - }}\frac{{{\rm{100}}}}{{{{{\rm{(t + 10)}}}^{\rm{2}}}}}} \right){\rm{dt}}\end{array}\)

Substitute\({\rm{t + 10 = u}}\)and \({\rm{d t = d u}}\)

Limits of Integration will change from\(\int_{\rm{ - }} {{{\rm{2}}^{\rm{4}}}} \)to\(\int_{10 + 2}^{10 + 4} = \mathop \smallint \nolimits_{12}^{14} \)

\(\begin{array}{c}{\rm{x(4) - x(2) = }}\int_{{\rm{12}}}^{{\rm{14}}} {\rm{5}} {\rm{000}}\left( {{\rm{1 - }}\frac{{{\rm{100}}}}{{{{\rm{u}}^{\rm{2}}}}}} \right){\rm{du}}\\{\rm{x(4) - x(2) = 5000}}\left( {{\rm{u + }}\frac{{{\rm{100}}}}{{\rm{u}}}} \right)_{{\rm{12}}}^{{\rm{14}}}\\{\rm{x(4) - x(2) = 5000}}\left( {{\rm{14 + }}\frac{{{\rm{100}}}}{{{\rm{14}}}}} \right){\rm{ - 5000}}\left( {{\rm{12 + }}\frac{{{\rm{100}}}}{{{\rm{12}}}}} \right)\\ \approx {\rm{4047}}{\rm{.619}}\end{array}\)

Therefore, between the start of the third week and the end of the fourth week, a calculator was created \({\rm{ = 4047}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free