The volume of the total amount spilled is determined by the integral of the leak rate. Because the rate is in liters per minute, multiply from \({\rm{0}}\) to \({\rm{60}}\) to calculate the volume lost in the first hour.
\({\rm{V = }}\int_{\rm{0}}^{{\rm{60}}} {\rm{1}} {\rm{00}}{{\rm{e}}^{{\rm{ - 0}}{\rm{.01t}}}}{\rm{dt}}\)
Limits of\({\rm{u}}\),
\(\begin{aligned}{c}{\rm{u = - 0}}{\rm{.01 t }}\\{\rm{d u = - 0}}{\rm{.01 d t }}\\{\rm{ - }}\frac{{\rm{1}}}{{{\rm{0}}{\rm{.01}}}}{\rm{du = dt}}\\{\rm{ - 100du = dt}}\end{aligned}\)
Values are,
\(\begin{aligned}{c}{\rm{a = - 0}}{\rm{.01}}\\{\rm{t = - 0}}{\rm{.01(0)}}\\{\rm{ = 0}}\\{\rm{b = - 0}}{\rm{.01(60)}}\\{\rm{ = - 0}}{\rm{.6}}\end{aligned}\)
Therefore,
\(\begin{aligned}{c}{\rm{V = }}\int_{\rm{0}}^{{\rm{60}}} {\rm{1}} {\rm{00}}{{\rm{e}}^{{\rm{ - 0}}{\rm{.01t}}}}{\rm{dt}}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{ - 0}}{\rm{.6}}} {\rm{1}} {\rm{00( - 100)}}{{\rm{e}}^{\rm{u}}}{\rm{du}}\\{\rm{ = - 10000}}\left( {{{\rm{e}}^{\rm{u}}}} \right)_{\scriptstyle{\rm{0}}\atop\scriptstyle}^{{\rm{ - 0}}{\rm{.6}}}\\{\rm{ = - 10000}}\left( {{{\rm{e}}^{{\rm{ - 0}}{\rm{.6}}}}{\rm{ - 1}}} \right)\\ \approx {\rm{4512 liters}}\end{aligned}\)
So, the oil leaked in first hour is approximately\({\rm{4512liters}}\).