Chapter 5: Q5E (page 289)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{2}} {{\rm{(2x - 3)(4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 1)dx}}} \)
Short Answer
The value of the integral is\({\rm{ = - 2}}\)
Chapter 5: Q5E (page 289)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{2}} {{\rm{(2x - 3)(4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 1)dx}}} \)
The value of the integral is\({\rm{ = - 2}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
Find the derivative of the function \({g^\prime }(s)\), using part 1 of The Fundamental Theorem of Calculus and integral evaluation.
\(g(s) = \int_5^s {{{\left( {t - {t^2}} \right)}^8}} dt\)
Find the derivative of the function \(F(x) = \int_x^{10} {\tan } \theta d\theta \) using Part 1 of the Fundamental Theorem of Calculus.
Evaluate the integral.
\(\int_0^1 {\cosh } tdt\).
Find the average value of the function \(f(x) = \frac{1}{x}\) in the interval \({\rm{(1,4)}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.