Chapter 5: Q58E (page 307)
To evaluate the integral function \(\int_0^1 x \sqrt {1 - {x^4}} dx\).
Short Answer
The evaluation of the integral is \(\frac{1}{8}\pi \).
Chapter 5: Q58E (page 307)
To evaluate the integral function \(\int_0^1 x \sqrt {1 - {x^4}} dx\).
The evaluation of the integral is \(\frac{1}{8}\pi \).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {\sqrt {\cot x} {{\csc }^2}xdx} \).
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{2}} {{\rm{(2x - 3)(4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 1)dx}}} \)
valuate the integralby making the given substitution.
\(\int {{x^3}} {\left( {2 + {x^4}} \right)^5}dx,\;\;\;u = 2 + {x^4}\)
Evaluate the indefinite integral\(\int {\frac{{{{(\ln x)}^2}}}{x}} dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.