Chapter 5: Q51E (page 307)
\({\rm{ }}\int_{\rm{e}}^{{{\rm{e}}^{\rm{4}}}} {\frac{{{\rm{dx}}}}{{{\rm{x}}\sqrt {{\rm{lnx}}} }}} .\)
Short Answer
The definite integral's evaluation is\({\rm{2}}\).
Chapter 5: Q51E (page 307)
\({\rm{ }}\int_{\rm{e}}^{{{\rm{e}}^{\rm{4}}}} {\frac{{{\rm{dx}}}}{{{\rm{x}}\sqrt {{\rm{lnx}}} }}} .\)
The definite integral's evaluation is\({\rm{2}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Example 2 in Section 5.1 we showed that \(\int_0^1 {{x^2}} dx = \frac{1}{3}\). Use this fact and the properties of integrals to evaluate \(\int_0^1 {\left( {5 - 6{x^2}} \right)} dx\).
Find the derivative of the function \(h(x) = \int_2^{\frac{1}{x}} {{\mathop{\rm arc}\nolimits} } {\rm{ tan t dt}}\) using the Part 1 of The Fundamental Theorem of Calculus.
Evaluate the integral.
\(\int_0^{\pi /3} {\frac{{\sin \theta + \sin \theta {{\tan }^2}\theta }}{{{{\sec }^2}\theta }}} d\theta \)
Evaluate the integral by interpreting it in terms of areas:
\(\int\limits_{{\rm{ - 1}}}^{\rm{2}} {{\rm{(1 - x)dx}}} \)
Evaluate the given integral.
\(\int\limits_0^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.