Chapter 5: Q4E (page 289)
Evaluate the integral.
\(\int\limits_{\rm{0}}^{\rm{3}} {{\rm{(1 + 6}}{{\rm{w}}^{\rm{2}}}{\rm{ - 10}}{{\rm{w}}^{\rm{4}}}{\rm{)dw}}} \)
Short Answer
The value of the integral is \({\rm{ - 429}}\).
Chapter 5: Q4E (page 289)
Evaluate the integral.
\(\int\limits_{\rm{0}}^{\rm{3}} {{\rm{(1 + 6}}{{\rm{w}}^{\rm{2}}}{\rm{ - 10}}{{\rm{w}}^{\rm{4}}}{\rm{)dw}}} \)
The value of the integral is \({\rm{ - 429}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).
Find the derivative of the function \(g(x) = \int_3^x {{e^{{t^2} - t}}} dt\) using part 1 of the Fundamental Theorem of Calculus.
Evaluate the indefinite integral.
\(\int {{{(3t + 2)}^{2.4}}} dt\)
Evaluate the indefinite integral\(\int {\frac{{\cos \left( {{\pi \mathord{\left/
{\vphantom {\pi x}} \right.
\kern-\nulldelimiterspace} x}} \right)}}{{{x^2}}}} dx\).
Evaluate the integralby making the given substitution.
\(\int {{{\cos }^3}} \theta \sin \theta d\theta ,\;\;\;u = \cos \theta \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.