Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the definite integral \(\int_{{\rm{ - \pi /4}}}^{{\rm{\pi /4}}} {\left( {{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{tanx}}} \right)} {\rm{dx}}\)

Short Answer

Expert verified

Evaluation of symmetry is\({\rm{0}}\).

Step by step solution

01

 Evaluate\({\rm{f( - x)}}\).

So \({\rm{f(x) = }}{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{tanx,}}\)

\(\begin{array}{c}{\rm{f( - x) = ( - x}}{{\rm{)}}^{\rm{3}}}{\rm{ + ( - x}}{{\rm{)}}^{\rm{4}}}{\rm{tan( - x) }}\\{\rm{ = - }}{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{tan( - x) }}\\{\rm{ = - }}{{\rm{x}}^{\rm{3}}}{\rm{ - }}{{\rm{x}}^{\rm{4}}}{\rm{tanx}}\;\;\;{\rm{(tan( - x) = - tanx)}}\end{array}\)

02

 Odd function \(_{{\rm{ - a}}}^{\rm{a}}{\rm{f(x)dx = 0}}\)because symmetry.

So thatsymmetry is \(_{{\rm{ - \pi /4}}}^{{\rm{\pi /4}}}\left( {{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{tanx}}} \right){\rm{dx = 0}}\)

Hence the define integral\(\int_{{\rm{ - \pi /4}}}^{{\rm{\pi /4}}} {\left( {{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{tanx}}} \right)} {\rm{dx = 0}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free