Chapter 5: Q49E (page 307)
Evaluate the definite integral \(\int_{{\rm{ - \pi /4}}}^{{\rm{\pi /4}}} {\left( {{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{tanx}}} \right)} {\rm{dx}}\)
Short Answer
Evaluation of symmetry is\({\rm{0}}\).
Chapter 5: Q49E (page 307)
Evaluate the definite integral \(\int_{{\rm{ - \pi /4}}}^{{\rm{\pi /4}}} {\left( {{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{tanx}}} \right)} {\rm{dx}}\)
Evaluation of symmetry is\({\rm{0}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral by interpreting it in terms of areas:
\(\int\limits_{{\rm{ - 1}}}^{\rm{2}} {{\rm{(1 - x)dx}}} \)
Evaluate the given integral.
\(\) \(\int\limits_{\rm{0}}^{\rm{1}} {{\rm{x(}}\sqrt({\rm{3}}){{\rm{x}}}{\rm{ + }}\sqrt({\rm{4}}){{\rm{x}}}{\rm{)dx}}} \)
Use Property 8 to estimate the value of the integral.
\(\int_{\pi /4}^{\pi /3} {tan} xdx\)
The velocity graph of an accelerating car is shown.
(a) Estimate the average velocity of the car during the first \(12\) seconds.
(b) At what time was the instantaneous velocity equal to the average velocity?
To prove the statement \(\int_a^b f ( - x)dx = \int_{ - b}^{ - a} f (x)dx\) and draw a diagram to interpret this equation geometrically for \(f(x) \ge 0\) and \(0 < a < b.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.