Chapter 5: Q48E (page 281)
Use Property 8 to estimate the value of the integral.
\(\int_0^2 {\sqrt {{x^3} + 1} } dx\)
Short Answer
The value of the integral \(\int_0^2 {\sqrt {{x^3} + 1} } dx\) is \(2 \le \int_0^2 {\sqrt {{x^3} + 1} } dx \le 6\)
Chapter 5: Q48E (page 281)
Use Property 8 to estimate the value of the integral.
\(\int_0^2 {\sqrt {{x^3} + 1} } dx\)
The value of the integral \(\int_0^2 {\sqrt {{x^3} + 1} } dx\) is \(2 \le \int_0^2 {\sqrt {{x^3} + 1} } dx \le 6\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDerivate the function \(g(x) = \int_1^x {\frac{1}{{{t^3} + 1}}} dt\) using the part 1 of the fundamental theorem of calculus.
Use Property 8 to estimate the value of the integral.
\(\int_1^2 {\frac{1}{x}} dx\)
Find the derivative of function \(y\) using the Part 1 of the Fundamental Theorem of Calculus.
\(y = \int_{\sin x}^1 {\sqrt {1 + {t^2}} } dt\)
Calculate the area of the region that lies under the curve and above the x-axis.
\({\rm{y = 2x - }}{{\rm{x}}^{\rm{2}}}\)
Evaluate the integral.
\(\int_0^1 {\cosh } tdt\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.