Chapter 5: Q48E (page 307)
Evaluate the definite integral
Short Answer
Hence the \(\int_{\rm{0}}^{\rm{4}} {\frac{{\rm{x}}}{{\sqrt {{\rm{1 + 2x}}} }}} {\rm{dx}}\) is equal to \(\frac{{{\rm{10}}}}{{\rm{3}}}\)is proved
Chapter 5: Q48E (page 307)
Evaluate the definite integral
Hence the \(\int_{\rm{0}}^{\rm{4}} {\frac{{\rm{x}}}{{\sqrt {{\rm{1 + 2x}}} }}} {\rm{dx}}\) is equal to \(\frac{{{\rm{10}}}}{{\rm{3}}}\)is proved
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral.
\(\int_0^{1/\sqrt 3 } {\frac{{{t^2} - 1}}{{{t^4} - 1}}} dt\).
Evaluate the indefinite integral\(\int {\frac{{dx}}{{5 - 3x}}} \).
Evaluate the integrals.
\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)
Evaluate the integral.
\(\int_{\rm{1}}^{\rm{2}} {\frac{{{{{\rm{(x - 1)}}}^{\rm{3}}}}}{{{{\rm{x}}^{\rm{2}}}}}} {\rm{dx}}\).
Evaluate the integral.
\(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.