Let us simplify,
\(\begin{aligned}{c}\mathop {\lim }\limits_{h \to 0} {f_{ave}} &= \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\int_x^{x + h} f (x)dx\\ &= \mathop {\lim }\limits_{h \to 0} \frac{1}{h}(F(x))_x^{x + h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{1}{h}(F(x + h) - F(x))\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{F(x + h) - F(x)}}{h}\end{aligned}\)
This is the limit definition of the derivative.
\(\begin{array}{c}\mathop {\lim }\limits_{h \to 0} {f_{ave}} = {F^'}(x)\\ = f(x)\end{array}\(
Therefore, limit as \(h \to 0\(of the average value of \(f\(on the interval \((x,x + h(\(is \(f(x)\(.