Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the general indefinite integral.

\(\int {\frac{{{\rm{sinx}}}}{{{\rm{1 - si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}}}{\rm{dx}}} \)

Short Answer

Expert verified

\(\int {\frac{{{\rm{sinx}}}}{{{\rm{1 - si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}}}{\rm{dx}}} {\rm{ = secx + tanx + x + C}}\)

Step by step solution

01

Rationalising the equation.

\(\begin{array}{c}\int {\frac{{{\rm{sinx}}}}{{{\rm{1 - sinx}}}}\frac{{{\rm{(1 + sinx)}}}}{{{\rm{(1 + sinx)}}}}{\rm{dx}}} = \int {\frac{{{\rm{sinx + si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}}}{{{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}{\rm{dx}}} \\\end{array}\)

02

Simplifying the equation

\(\begin{array}{c}{\rm{ = }}\int {\frac{{{\rm{sinx + si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}}}{{{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}{\rm{dx}}} \\{\rm{ = }}\int {{\rm{secxtanxdx + }}\int {{\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{x}}} } {\rm{dx}}\\{\rm{ = secx + }}\int {{\rm{(se}}{{\rm{c}}^{\rm{2}}}{\rm{x - 1)}}} {\rm{dx = sec + tanx + x + C}}\\\end{array}\)

Therefore,\(\int {\frac{{{\rm{sinx}}}}{{{\rm{1 - si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}}}{\rm{dx}}} {\rm{ = secx + tanx + x + C}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free