Chapter 5: Q43E (page 289)
Find the general indefinite integral.
\(\int {(\sin x + \sinh x)dx} \)
Short Answer
The value of \(\int {(\sin x + \sinh x)dx} \) is \( - \cos x + \cosh + C\).
Chapter 5: Q43E (page 289)
Find the general indefinite integral.
\(\int {(\sin x + \sinh x)dx} \)
The value of \(\int {(\sin x + \sinh x)dx} \) is \( - \cos x + \cosh + C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTo sketch the rough graph of \(g\).
(a) Find the average value of \(f\) on the given interval.
(b) Find \(c\) such that \({{\rm{f}}_{{\rm{ave}}}}{\rm{ = f(c)}}\)
(c) Sketch the graph of \(f\)and a rectangle whose area is the same as the area under the graph of\(f\).
\({\rm{f(x) = (x - 3}}{{\rm{)}}^{\rm{2}}}{\rm{,}}\left( {{\rm{2,5}}} \right)\)
What is wrong with the equation?
\(\int\limits_0^\pi {{{\sec }^2}xdx = \left( {\tan x} \right)} _0^\pi = 0\)
valuate the integralby making the given substitution.
\(\int {{x^3}} {\left( {2 + {x^4}} \right)^5}dx,\;\;\;u = 2 + {x^4}\)
Evaluate the indefinite integral\(\int {\frac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}} dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.