Chapter 5: Q42E (page 281)
Find \(\int_0^5 f (x)dx\) if
Short Answer
The value of the integral function is \(17.\)
Chapter 5: Q42E (page 281)
Find \(\int_0^5 f (x)dx\) if
The value of the integral function is \(17.\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function \({g^\prime }(x)\) by the Fundamental Theorem method.
\(g(x) = \int_{2x}^{3x} {\frac{{{u^2} - 1}}{{{u^2} + 1}}} du\)
Evaluate the indefinite integral\(\int {\frac{{\cos \left( {{\pi \mathord{\left/
{\vphantom {\pi x}} \right.
\kern-\nulldelimiterspace} x}} \right)}}{{{x^2}}}} dx\).
Evaluate the integral.
\(\int\limits_{\rm{0}}^{\rm{3}} {{\rm{(1 + 6}}{{\rm{w}}^{\rm{2}}}{\rm{ - 10}}{{\rm{w}}^{\rm{4}}}{\rm{)dw}}} \)
To evaluate the integral \(\int_{ - 5}^5 {\left( {x - \sqrt {25 - {x^2}} } \right)} dx\) by an area interpretation.
If \(a\) and \(b\) are positive numbers, show that \(\int_0^1 {{x^a}} {(1 - x)^b}dx = \int_0^1 {{x^b}} {(1 - x)^a}dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.