Chapter 5: Q41E (page 281)
If \(\int_0^9 f (x)dx = 37\) and \(\int_0^9 g (x)dx = 16\), find\(\int_0^9 {(2f(} x) + 3g(x))dx\)
Short Answer
The value of the integral \(\int_0^9 {(2f(} x) + 3g(x))dx\) is \(122\).
Chapter 5: Q41E (page 281)
If \(\int_0^9 f (x)dx = 37\) and \(\int_0^9 g (x)dx = 16\), find\(\int_0^9 {(2f(} x) + 3g(x))dx\)
The value of the integral \(\int_0^9 {(2f(} x) + 3g(x))dx\) is \(122\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral.
\(\) \(\int\limits_{\rm{0}}^{\rm{4}} {{\rm{(3}}\sqrt {\rm{t}} {\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt}}} \)
Evaluate the indefinite integral\(\int {{{\sec }^2}2} \theta d\theta \).
If \(F(x) = \int_2^x f (t)dt\), where \(f\) is the function whose graph is given, which of the following values is largest?
(A) \(F(0)\)
(B) \(F(1)\)
(C) \(F(2)\)
(D) \(F(3)\)
(E) \(F(4)\)
Evaluate the integral by making the given substitution.
\(\int {\frac{{{\rm{dt}}}}{{{{{\rm{(1 - 6t)}}}^{\rm{4}}}}}} {\rm{,}}\;\;\;{\rm{u = 1 - 6t}}\).
Find the derivative of the function \(F(x) = \int_x^{10} {\tan } \theta d\theta \) using Part 1 of the Fundamental Theorem of Calculus.
What do you think about this solution?
We value your feedback to improve our textbook solutions.