Chapter 5: Q40E (page 289)
Verify by differentiation that the formula is correct.
\(\int {{\rm{co}}{{\rm{s}}^{\rm{2}}}} {\rm{xdx = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{sin2x + C}}\)
Short Answer
Formula is Verified.
Chapter 5: Q40E (page 289)
Verify by differentiation that the formula is correct.
\(\int {{\rm{co}}{{\rm{s}}^{\rm{2}}}} {\rm{xdx = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{sin2x + C}}\)
Formula is Verified.
All the tools & learning materials you need for study success - in one app.
Get started for freeTo determine the value of the integral, .\(\int {{{\sinh }^2}} x\cosh xdx\)
Calculate the area of the region that lies under the curve and above the x-axis.
\({\rm{y = 1 - }}{{\rm{x}}^{\rm{2}}}\)
Evaluate the integral.
\(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)
Evaluate the integral.
\(\int_0^{\sqrt 3 /2} {\frac{{dr}}{{\sqrt {1 - {r^2}} }}} \).
Evaluate the indefinite integral\(\int {\frac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}} dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.