Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Verify by differentiation that the formula is correct.

\(\int {{\rm{co}}{{\rm{s}}^{\rm{2}}}} {\rm{xdx = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{sin2x + C}}\)

Short Answer

Expert verified

Formula is Verified.

Step by step solution

01

Simplifying the formula.

The formula can be verified by showing that differentiating the value of indefinite integral gives back the function.

\(\begin{aligned}{c}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{sin2x + C}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{cos2x}}{\rm{.2}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{cos2x}}...............{\rm{(1)}}\end{aligned}\)

02

Verifying the formula.

Using equation \({\rm{(1)}}\)

\(\begin{aligned}{c}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{(1 + cos2x) = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{1 + co}}{{\rm{s}}^{\rm{2}}}{\rm{x - si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{1 - si}}{{\rm{n}}^{\rm{2}}}{\rm{x + co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}} \right){\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x + co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{2co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}} \right){\rm{ = co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free