Chapter 5: Q40E (page 281)
If \(\int_1^5 f (x)dx = 12\) and \(\int_4^5 f (x)dx = 3.6\), find \(\int_1^4 f (x)dx\).
Short Answer
The value of \(\int_1^4 f (x)dx\) is \(8.4.\)
Chapter 5: Q40E (page 281)
If \(\int_1^5 f (x)dx = 12\) and \(\int_4^5 f (x)dx = 3.6\), find \(\int_1^4 f (x)dx\).
The value of \(\int_1^4 f (x)dx\) is \(8.4.\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function \(y = \int_{\sin x}^{\cos x} {{{\left( {1 + {v^2}} \right)}^{10}}} dv\)using the Part 1 of the Fundamental Theorem of Calculus.
What is wrong with the equation?
\(\) \(\int\limits_{ - 1}^3 {\frac{1}{{{x^2}}}dx = \left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)_{ - 1}^3 = - \frac{4}{3}} \)
Evaluate the indefinite integral\(\int {\sqrt {\cot x} {{\csc }^2}xdx} \).
Evaluate the integrals.
\(\int_{1/\sqrt 3 }^{\sqrt 3 } {\frac{8}{{1 + {x^2}}}} dx\)
Evaluate the integralby making the given substitution.
\(\int {{{\cos }^3}} \theta \sin \theta d\theta ,\;\;\;u = \cos \theta \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.