Chapter 5: Q3E (page 308)
State the Midpoint Rule.
Short Answer
The Midpoint Rule states that: \(\mathop {lim}\limits_{n \to \infty } \;\sum\limits_{i = 1}^n {f({m_i})} \Delta x = \int\limits_a^b {f(x)\;} dx\)
Chapter 5: Q3E (page 308)
State the Midpoint Rule.
The Midpoint Rule states that: \(\mathop {lim}\limits_{n \to \infty } \;\sum\limits_{i = 1}^n {f({m_i})} \Delta x = \int\limits_a^b {f(x)\;} dx\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral by interpreting it in terms of areas.
\(\int_0^{10} | x - 5|dx\)
Express the following limit as a definite integral:
\(\mathop {lim}\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{{i^4}}}{{{n^5}}}} \)
Find the derivative of the function \({g^\prime }(s)\), using part 1 of The Fundamental Theorem of Calculus and integral evaluation.
\(g(s) = \int_5^s {{{\left( {t - {t^2}} \right)}^8}} dt\)
Find the average value of the function \(g(x) = \sqrt(3){x}\) in the interval \({\rm{(1,8)}}\).
Evaluate the integral.
\(\int_{\rm{1}}^{\rm{e}} {\frac{{{{\rm{x}}^{\rm{2}}}{\rm{ + x + 1}}}}{{\rm{x}}}} {\rm{dx}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.