Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral

\(\int\limits_{{\rm{ - 2}}}^{\rm{0}} {\left( {{\rm{(}}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{4}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{t}}^{\rm{3}}}{\rm{ - t}}} \right)} {\rm{dt}}\)\(\)

Short Answer

Expert verified

The value of the integral is \(\frac{{{\rm{21}}}}{{\rm{5}}}\)

Step by step solution

01

Evaluation Theorem

If\({\rm{f}}\)is continuous on the interval \(\left( {{\rm{a,b}}} \right)\), then \(\int\limits_{\rm{a}}^{\rm{b}} {{\rm{f(x)dx = F(b) - F(a)}}} \)

Where \({\rm{F}}\) is any antiderivative of \({\rm{f}}\), that is \({{\rm{F}}^{\rm{'}}}{\rm{ = f}}\)

02

Cancels out arbitrary constant C

To find the general antiderivative, using the indefinite integral

\(\)

and ignoring (just for the moment) the boundaries of integration.

We will leave out the arbitrary constant C, since it cancels out when calculating a definite integral.

03

Using Evaluation theorem

\(\begin{array}{c}\int {{\rm{(}}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{4}}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{t}}^{\rm{3}}}{\rm{ - t)dt = }}\left( {\frac{{\rm{1}}}{{{\rm{10}}}}{{\rm{t}}^{\rm{5}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{16}}}}{{\rm{t}}^{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{2}}}} \right]_{{\rm{ - 2}}}^{\rm{0}}\\{\rm{ &= }}\left( {\frac{{\rm{1}}}{{{\rm{10}}}}{{{\rm{(0)}}}^{\rm{5}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{16}}}}{{{\rm{(0)}}}^{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{(0)}}} \right){\rm{ - }}\left( {\frac{{\rm{1}}}{{{\rm{10}}}}{{{\rm{( - 2)}}}^{\rm{5}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{16}}}}{{{\rm{( - 2)}}}^{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{{{\rm{( - 2)}}}^{\rm{2}}}} \right)\\ &= - \left( {\frac{{32}}{{10}} + 1 - 2} \right) = - \left( { - \frac{{42}}{{10}}} \right) = \frac{{21}}{5}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free