Chapter 5: Q38E (page 281)
Given that \(\int_0^1 3 x\sqrt {{x^2} + 4} dx = 5\sqrt 5 - 8\), what is \(\int_1^0 3 u\sqrt {{u^2} + 4} du?\)
Short Answer
The value of \(\int_1^0 3 u\sqrt {{u^2} + 4} du\) is \( - 5\sqrt 5 + 8\)
Chapter 5: Q38E (page 281)
Given that \(\int_0^1 3 x\sqrt {{x^2} + 4} dx = 5\sqrt 5 - 8\), what is \(\int_1^0 3 u\sqrt {{u^2} + 4} du?\)
The value of \(\int_1^0 3 u\sqrt {{u^2} + 4} du\) is \( - 5\sqrt 5 + 8\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse Property 8 to estimate the value of the integral.
\(\int_{\pi /4}^{3\pi /4} {si{n^2}} xdx\)
Evaluate the integral.
\(\int_1^2 {\left( {\frac{x}{2} - \frac{2}{x}} \right)} dx\)
Evaluate the indefinite integral.
\(\int {{{(3t + 2)}^{2.4}}} dt\)
Evaluate the indefinite integral\(\int {\frac{x}{{{{\left( {{x^2} + 1} \right)}^2}}}} dx\).
Find \(\int_0^5 f (x)dx\) if
What do you think about this solution?
We value your feedback to improve our textbook solutions.