Substituting u to function\(\int_0^{2\pi } {{{\cos }^2}} (x)\left( {1 - {{\cos }^2}(x)} \right)\sin (x)dx\)–
\(\begin{aligned}{c}\int_0^{2\pi } {{{\cos }^2}} (x)\left( {1 - {{\cos }^2}(x)} \right)\sin (x)dx &= \int_1^1 {{u^2}} \left( {1 - {u^2}} \right)( - du)\\ &= - \int_1^1 {{u^2}} \left( {1 - {u^2}} \right)du\end{aligned}\)
Using the properties of Definite Integral, if lower bound is the same with the upper bound, then the change in \(x\) is equal to \(0\).
\(\begin{aligned}{c}\int_0^{2\pi } {{{\cos }^2}} (x)\left( {1 - {{\cos }^2}(x)} \right)\sin (x)dx &= - \int_1^1 {{u^2}} \left( {1 - {u^2}} \right)du\\ &= 0\end{aligned}\)
Therefore, using the graph and the evaluating the value is obtained as \(0\).