Chapter 5: Q34E (page 289)
Calculate the area of the region that lies under the curve and above the x-axis.
\({\rm{y = 2x - }}{{\rm{x}}^{\rm{2}}}\)
Short Answer
Area of the region is \(\frac{{\rm{4}}}{{\rm{3}}}\)
Chapter 5: Q34E (page 289)
Calculate the area of the region that lies under the curve and above the x-axis.
\({\rm{y = 2x - }}{{\rm{x}}^{\rm{2}}}\)
Area of the region is \(\frac{{\rm{4}}}{{\rm{3}}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\int_0^5 f (x)dx\) if
To evaluate the integral \(\int_{ - 5}^5 {\left( {x - \sqrt {25 - {x^2}} } \right)} dx\) by an area interpretation.
Evaluate the indefinite integral\(\int {\frac{{{\rm{a + b}}{{\rm{x}}^{\rm{2}}}}}{{\sqrt {{\rm{3ax + b}}{{\rm{x}}^{\rm{3}}}} }}} {\rm{dx}}\).
Evaluate the integral.
\(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)
Evaluate the indefinite integral.\(\int {\frac{{dx}}{{\sqrt {1 - {x^2}} {{\sin }^{ - 1}}x}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.