Chapter 5: Q33E (page 280)
Evaluate the integral by interpreting it in terms of areas.
\(\int_0^{10} | x - 5|dx\)
Short Answer
The integral by interpreting it in terms of areas is \(2.5\)
Chapter 5: Q33E (page 280)
Evaluate the integral by interpreting it in terms of areas.
\(\int_0^{10} | x - 5|dx\)
The integral by interpreting it in terms of areas is \(2.5\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {{e^x}\sqrt {1 + {e^x}} dx} \)
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
Find the average value of the function \(g(x) = \sqrt(3){x}\) in the interval \({\rm{(1,8)}}\).
Evaluate the integral.
\(\int_0^{\pi /3} {\frac{{\sin \theta + \sin \theta {{\tan }^2}\theta }}{{{{\sec }^2}\theta }}} d\theta \)
Evaluate the integral.
\(\int_{\rm{0}}^{\rm{1}} {\left( {{{\rm{x}}^{{\rm{10}}}}{\rm{ + 1}}{{\rm{0}}^{\rm{x}}}} \right)} {\rm{dx}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.