Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the indefinite integral\(\int {\frac{{{\rm{sinx}}}}{{{\rm{1 + co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}} {\rm{dx}}\).

Short Answer

Expert verified

The indefinite integral value of the given equation is\(\int {\frac{{{\rm{sinx}}}}{{{\rm{1 + co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}} {\rm{dx = - ta}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {{\rm{cosx}}} \right){\rm{ + c}}\).

Step by step solution

01

Expand the number of variables in the equation.

Given: \({\rm{I = }}\int {\frac{{{\rm{sinx}}}}{{{\rm{1 + co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}} {\rm{dx}}\)

Let \({\rm{u = cosx}} \to {\rm{du = ( - sinx)dx}} \to {\rm{dx = - }}\frac{{{\rm{du}}}}{{{\rm{sinx}}}}\)

Substitute \({\rm{x}}\)and \({\rm{dx}}\)for \({\rm{u}}\)and \({\rm{du}}\)

\({\rm{I = - }}\int {\frac{{\rm{1}}}{{{{\rm{u}}^{\rm{2}}}{\rm{ + 1}}}}} {\rm{du}}\)

02

Evaluate the equation.

Integrate \(\;\;{\rm{I = - ta}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{u + c}}\)

Return to the original position \(\;{\rm{u = cos}}\)

\({\rm{I = - ta}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {{\rm{cosx}}} \right){\rm{ + c}}\)

Therefore, the indefinite integral value of the given equation is\(\int {\frac{{{\rm{sinx}}}}{{{\rm{1 + co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}} {\rm{dx = - ta}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {{\rm{cosx}}} \right){\rm{ + c}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free