Chapter 5: Q31E (page 289)
What is wrong with the equation?
\(\) \(\int\limits_{ - 1}^3 {\frac{1}{{{x^2}}}dx = \left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)_{ - 1}^3 = - \frac{4}{3}} \)
Short Answer
We cannot apply the evaluation theorem
Chapter 5: Q31E (page 289)
What is wrong with the equation?
\(\) \(\int\limits_{ - 1}^3 {\frac{1}{{{x^2}}}dx = \left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)_{ - 1}^3 = - \frac{4}{3}} \)
We cannot apply the evaluation theorem
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
Find the average value of the function \(g(x) = \sqrt(3){x}\) in the interval \({\rm{(1,8)}}\).
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
Evaluate the integral.
\(\int_0^{\sqrt 3 /2} {\frac{{dr}}{{\sqrt {1 - {r^2}} }}} \).
Evaluate the integral.
\(\int_0^{\pi /3} {\frac{{\sin \theta + \sin \theta {{\tan }^2}\theta }}{{{{\sec }^2}\theta }}} d\theta \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.