Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the given integral.

\(\int\limits_0^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx} \)

Short Answer

Expert verified

The value of the given integral is 3.

Step by step solution

01

Definition of function

The definition of the function is as follows:

If

\(x \in \left( {0,\pi } \right),\sin x \succ 0 \Rightarrow \left| {\sin x} \right| = \sin x\)

And if

\(x \in \left( {\pi .\frac{{3\pi }}{2}} \right),\sin x \prec 0 \Rightarrow \left| {\sin x} \right| = - \sin x\)

02

Rewrite the integral

\(\int\limits_0^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx = \int\limits_0^\pi {\left| {\sin x} \right|dx + \int\limits_\pi ^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx} } } \)

03

Evaluate the integral

\(\begin{aligned}{c}\int\limits_0^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx} &= \int\limits_0^\pi {\left| {\sin x} \right|dx + \int\limits_\pi ^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx} } \\ &= \int\limits_0^\pi {\sin xdx} - \int\limits_\pi ^{\frac{{3\pi }}{2}} {\sin xdx} \\ &= - \left. {\cos x} \right)_0^\pi + \left. {\cos x} \right)_\pi ^{\frac{{3\pi }}{2}}\\ &= - \cos \pi + \cos 0 + \cos \frac{{3\pi }}{2} - \cos \pi \\ &= 1 + 1 + 0 + 1\\ &= 3\end{aligned}\)

Therefore, the value of the integral is 3.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free