Chapter 5: Q30E (page 289)
Evaluate the given integral.
\(\int\limits_0^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx} \)
Short Answer
The value of the given integral is 3.
Chapter 5: Q30E (page 289)
Evaluate the given integral.
\(\int\limits_0^{\frac{{3\pi }}{2}} {\left| {\sin x} \right|dx} \)
The value of the given integral is 3.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven that \(\int_0^1 3 x\sqrt {{x^2} + 4} dx = 5\sqrt 5 - 8\), what is \(\int_1^0 3 u\sqrt {{u^2} + 4} du?\)
Evaluate the integral by making the given substitution.
\(\int {\frac{{{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{(1/x)}}}}{{{{\rm{x}}^{\rm{2}}}}}} {\rm{dx,}}\;\;\;{\rm{u = 1/x}}\).
Evaluate the integral.
\(\int\limits_{\rm{0}}^{\rm{3}} {{\rm{(1 + 6}}{{\rm{w}}^{\rm{2}}}{\rm{ - 10}}{{\rm{w}}^{\rm{4}}}{\rm{)dw}}} \)
Find \(\int_0^5 f (x)dx\) if
If \(f\) is continuous and \(\int_0^9 f (x)dx = 4\), find \(\int_0^3 x f\left( {{x^2}} \right)dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.