Chapter 5: Q29E (page 289)
Evaluate the given integral.
\(\int\limits_{ - 1}^2 {\left( {x - 2\left| x \right|} \right)dx} \)
Short Answer
The value of the given integral is \( - 3.5\)
Chapter 5: Q29E (page 289)
Evaluate the given integral.
\(\int\limits_{ - 1}^2 {\left( {x - 2\left| x \right|} \right)dx} \)
The value of the given integral is \( - 3.5\)
All the tools & learning materials you need for study success - in one app.
Get started for freeTo evaluate the integral \(\int_{ - 5}^5 {\left( {x - \sqrt {25 - {x^2}} } \right)} dx\) by an area interpretation.
Find the derivative of the function \(h(x) = \int_0^{{x^2}} {\sqrt {1 + {r^3}} } dr\) using Part 1 of The Fundamental Theorem of Calculus.
Use Property 8 to estimate the value of the integral.
\(\int_0^2 {\sqrt {{x^3} + 1} } dx\)
Find the derivative of the function \(F(x) = \int_x^{10} {\tan } \theta d\theta \) using Part 1 of the Fundamental Theorem of Calculus.
Evaluate the integral.
\(\int\limits_{\rm{0}}^{\rm{3}} {{\rm{(1 + 6}}{{\rm{w}}^{\rm{2}}}{\rm{ - 10}}{{\rm{w}}^{\rm{4}}}{\rm{)dw}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.