Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the indefinite integral\(\int {\frac{{{{\rm{2}}^{\rm{t}}}}}{{{{\rm{2}}^{\rm{t}}}{\rm{ + 3}}}}{\rm{dt}}} \).

Short Answer

Expert verified

The indefinite integral value of the given equation is\(\int {\frac{{{{\rm{2}}^{\rm{t}}}}}{{{{\rm{2}}^{\rm{t}}}{\rm{ + 3}}}}{\rm{dt}}} {\rm{ = }}\frac{{{\rm{ln(}}{{\rm{2}}^{\rm{t}}}{\rm{ + 3)}}}}{{{\rm{ln2}}}}{\rm{ + C}}\).

Step by step solution

01

Expand the number of variables in the equation.

Given: \(\int {\frac{{{{\rm{2}}^{\rm{t}}}}}{{{{\rm{2}}^{\rm{t}}}{\rm{ + 3}}}}{\rm{dt}}} \)

Substitute \({{\rm{2}}^{\rm{t}}}{\rm{ + 3}}\)and \({{\rm{2}}^{\rm{t}}}{\rm{ln2dt = du}} \Rightarrow {{\rm{2}}^{\rm{t}}}{\rm{dt = }}\frac{{{\rm{du}}}}{{{\rm{ln2}}}}\)

02

Evaluate the equation.

Used: \(\frac{{{\rm{d}}\left( {{{\rm{a}}^{\rm{x}}}} \right)}}{{{\rm{dx}}}}{\rm{ = }}{{\rm{a}}^{\rm{x}}}{\rm{lna}}\)

\(\begin{aligned}{c}{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{ln2}}}}\int {\frac{{\rm{1}}}{{\rm{u}}}{\rm{du}}} \\{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{ln2}}}}{\rm{ \times lnu + C}}\end{aligned}\)

Return to the original position \({\rm{u = }}{{\rm{2}}^{\rm{t}}}{\rm{ + 3}}\)

\({\rm{ = }}\frac{{{\rm{ln(}}{{\rm{2}}^{\rm{t}}}{\rm{ + 3)}}}}{{{\rm{ln2}}}}{\rm{ + C}}\)

Therefore, the indefinite integral value of the given equation is\(\int {\frac{{{{\rm{2}}^{\rm{t}}}}}{{{{\rm{2}}^{\rm{t}}}{\rm{ + 3}}}}{\rm{dt}}} {\rm{ = }}\frac{{{\rm{ln(}}{{\rm{2}}^{\rm{t}}}{\rm{ + 3)}}}}{{{\rm{ln2}}}}{\rm{ + C}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free