Chapter 5: Q27E (page 306)
Evaluate the indefinite integral\(\int {{{\sec }^3}x\tan xdx} \).
Short Answer
The indefinite integral value of the given equation is\(\int {{{\sec }^3}x\tan xdx = \frac{1}{3}{{\sec }^3}x + c} \).
Chapter 5: Q27E (page 306)
Evaluate the indefinite integral\(\int {{{\sec }^3}x\tan xdx} \).
The indefinite integral value of the given equation is\(\int {{{\sec }^3}x\tan xdx = \frac{1}{3}{{\sec }^3}x + c} \).
All the tools & learning materials you need for study success - in one app.
Get started for freeExpress the following limit as a definite integral:
\(\mathop {lim}\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{{i^4}}}{{{n^5}}}} \)
Given that \(\int_0^1 3 x\sqrt {{x^2} + 4} dx = 5\sqrt 5 - 8\), what is \(\int_1^0 3 u\sqrt {{u^2} + 4} du?\)
Find the average value of the function \(g(x) = \cos x\)in the interval \(\left( {0,\frac{\pi }{2}} \right)\)
Find \(\int_0^5 f (x)dx\) if
Derivate the function \(g(x) = \int_1^x {\frac{1}{{{t^3} + 1}}} dt\) using the part 1 of the fundamental theorem of calculus.
What do you think about this solution?
We value your feedback to improve our textbook solutions.