Chapter 5: Q26E (page 310)
Evaluate the integral, if it exists.
\(\int {\frac{{\cos (\ln x)}}{x}} dx\)
Short Answer
The integral\(\int {\frac{{\cos (\ln x)}}{x}} dx\) exists and the value for the integral is obtained as \(I = \sin (\ln x) + c\).
Chapter 5: Q26E (page 310)
Evaluate the integral, if it exists.
\(\int {\frac{{\cos (\ln x)}}{x}} dx\)
The integral\(\int {\frac{{\cos (\ln x)}}{x}} dx\) exists and the value for the integral is obtained as \(I = \sin (\ln x) + c\).
All the tools & learning materials you need for study success - in one app.
Get started for freeUse Property 8 to estimate the value of the integral.
\(\int_{\pi /4}^{\pi /3} {tan} xdx\)
Evaluate the indefinite integral\(\int {{e^x}\sqrt {1 + {e^x}} dx} \)
Find the average value of the function \(f(x) = \frac{1}{x}\) in the interval \({\rm{(1,4)}}\).
What is wrong with the equation?
\(\) \(\int\limits_{ - 1}^3 {\frac{1}{{{x^2}}}dx = \left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)_{ - 1}^3 = - \frac{4}{3}} \)
Evaluate the integral by making the given substitution.
\(\int {\frac{{{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{(1/x)}}}}{{{{\rm{x}}^{\rm{2}}}}}} {\rm{dx,}}\;\;\;{\rm{u = 1/x}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.