Chapter 5: Q22E (page 289)
Evaluate the integrals.
\(\int_{1/\sqrt 3 }^{\sqrt 3 } {\frac{8}{{1 + {x^2}}}} dx\)
Short Answer
The value of \(\int_{1/\sqrt 3 }^{\sqrt 3 } {\frac{8}{{1 + {x^2}}}} dx\) is\(\frac{{4\pi }}{3}\).
Chapter 5: Q22E (page 289)
Evaluate the integrals.
\(\int_{1/\sqrt 3 }^{\sqrt 3 } {\frac{8}{{1 + {x^2}}}} dx\)
The value of \(\int_{1/\sqrt 3 }^{\sqrt 3 } {\frac{8}{{1 + {x^2}}}} dx\) is\(\frac{{4\pi }}{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {{{\cos }^4}\theta \sin \theta d\theta } \)
Evaluate the indefinite integral\(\int {\sqrt {\cot x} {{\csc }^2}xdx} \).
If \(\int_1^5 f (x)dx = 12\) and \(\int_4^5 f (x)dx = 3.6\), find \(\int_1^4 f (x)dx\).
Express the following limit as a definite integral:
\(\mathop {lim}\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{{i^4}}}{{{n^5}}}} \)
To sketch the rough graph of \(g\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.