Chapter 5: Q22E (page 306)
Evaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
Short Answer
The indefinite integral value of the given equation is\(\int {\frac{{\sin (\ln x)}}{x}dx} = - \cos (\ln x) + c\).
Chapter 5: Q22E (page 306)
Evaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
The indefinite integral value of the given equation is\(\int {\frac{{\sin (\ln x)}}{x}dx} = - \cos (\ln x) + c\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {\frac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}} dx\).
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{2}} {{\rm{(2x - 3)(4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 1)dx}}} \)
Find the derivative of the function \(y = \int_0^{\tan x} {\sqrt {t + \sqrt t } } dt\) using Part 1 of The Fundamental Theorem of Calculus.
Evaluate\(\int_\pi ^\pi {si{n^2}} xco{s^4}xdx\)
Express the following limit as a definite integral:
\(\mathop {lim}\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{{i^4}}}{{{n^5}}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.