Chapter 5: Q21E (page 306)
To determine the value of the integral, .\(\int {{{\sinh }^2}} x\cosh xdx\)
Short Answer
The value of the integral, \(\int {{{\sinh }^2}} x\cosh xdx\) is \(\frac{{{{\sinh }^3}x}}{3} + C\).
Chapter 5: Q21E (page 306)
To determine the value of the integral, .\(\int {{{\sinh }^2}} x\cosh xdx\)
The value of the integral, \(\int {{{\sinh }^2}} x\cosh xdx\) is \(\frac{{{{\sinh }^3}x}}{3} + C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral
\(\) \(\int\limits_{\rm{1}}^{\rm{2}} {\left( {\frac{{\rm{1}}}{{{{\rm{x}}^{\rm{2}}}}}{\rm{ - }}\frac{{\rm{4}}}{{{{\rm{x}}^{\rm{3}}}}}} \right){\rm{dx}}} \)
If \(\int_0^9 f (x)dx = 37\) and \(\int_0^9 g (x)dx = 16\), find\(\int_0^9 {(2f(} x) + 3g(x))dx\)
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
Evaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
Evaluate the integral.
\(\) \(\int\limits_{\rm{0}}^{\rm{4}} {{\rm{(3}}\sqrt {\rm{t}} {\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.