Chapter 5: Q21E (page 298)
Find the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).
Short Answer
\(\frac{9}{8}\)
Chapter 5: Q21E (page 298)
Find the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).
\(\frac{9}{8}\)
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Find the average value of \({\rm{f}}\) on the given interval.
(b) Find \({\rm{c}}\) such that \({{\rm{f}}_{{\rm{ave}}}}{\rm{ = f(c)}}\)
(c) Sketch the graph of \({\rm{f}}\)and a rectangle whose area is the same as the area under the graph of \({\rm{f}}\)
\({\rm{f(x) = }}\sqrt {\rm{x}} {\rm{,(0,4)}}\)\({\rm{f(x) = }}\sqrt {\rm{x}} {\rm{,(0,4)}}\)
Evaluate the given integral.
\(\int\limits_{ - 1}^2 {\left( {x - 2\left| x \right|} \right)dx} \)
Find the derivative of the function \(y = \int_{\sin x}^{\cos x} {{{\left( {1 + {v^2}} \right)}^{10}}} dv\)using the Part 1 of the Fundamental Theorem of Calculus.
Evaluate the integrals.
\(\int_{1/\sqrt 3 }^{\sqrt 3 } {\frac{8}{{1 + {x^2}}}} dx\)
Evaluate the indefinite integral\(\int {\frac{{\sin (\ln x)}}{x}dx} \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.