Chapter 5: Q21E (page 289)
Evaluate the integral.
\(\int_0^{\sqrt 3 /2} {\frac{{dr}}{{\sqrt {1 - {r^2}} }}} \).
Short Answer
The solution of given integral\(\int_0^{\sqrt 3 /2} {\frac{{dr}}{{\sqrt {1 - {r^2}} }}} \) is \(\frac{\pi }{3}\).
Chapter 5: Q21E (page 289)
Evaluate the integral.
\(\int_0^{\sqrt 3 /2} {\frac{{dr}}{{\sqrt {1 - {r^2}} }}} \).
The solution of given integral\(\int_0^{\sqrt 3 /2} {\frac{{dr}}{{\sqrt {1 - {r^2}} }}} \) is \(\frac{\pi }{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {{{\sec }^2}2} \theta d\theta \).
Evaluate the integral by making the given substitution.
\(\int {{{\rm{x}}^{\rm{2}}}} \sqrt {{{\rm{x}}^{\rm{3}}}{\rm{ + 1}}} {\rm{dx,}}\;\;\;{\rm{u = }}{{\rm{x}}^{\rm{3}}}{\rm{ + 1}}\).
Evaluate the integral by interpreting it in terms of areas
Find the average value of the function \(f(\theta ) = \sec \theta \tan \theta \) in the interval \(\left( {0,\frac{\pi }{4}} \right)\).
Evaluate the indefinite integral\(\int {\frac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}} dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.