Chapter 5: Q20E (page 289)
Evaluate the integrals.
\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)
Short Answer
The value of \(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)is \(40\).
Chapter 5: Q20E (page 289)
Evaluate the integrals.
\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)
The value of \(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)is \(40\).
All the tools & learning materials you need for study success - in one app.
Get started for freeExpress the following limit as a definite integral:
\(\mathop {lim}\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{{i^4}}}{{{n^5}}}} \)
Evaluate the indefinite integral\(\int {\frac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}} dx\).
Evaluate the integral by interpreting it in terms of areas.
\(\int_0^{10} | x - 5|dx\)
Evaluate the integral.
\(\int\limits_{{\rm{ - 2}}}^{\rm{3}} {{\rm{(}}{{\rm{x}}^{\rm{2}}}{\rm{ - 3)dx}}} \)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{\pi }} {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.