Chapter 5: Q19E (page 289)
Evaluate the integral.
\(\int_0^1 {\cosh } tdt\).
Short Answer
The solution of given integral\(\int_0^1 {\cosh } tdt\) is \(1.175\).
Chapter 5: Q19E (page 289)
Evaluate the integral.
\(\int_0^1 {\cosh } tdt\).
The solution of given integral\(\int_0^1 {\cosh } tdt\) is \(1.175\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTo evaluate the integral \(\int_{ - 5}^5 {\left( {x - \sqrt {25 - {x^2}} } \right)} dx\) by an area interpretation.
Write as a single integral in the form \(\int_a^b f (x)dx:\int_{ - 2}^2 f (x)dx + \int_2^5 f (x)dx - \int_{ - 2}^{ - 1} f (x)dx\)
Evaluate the integral by interpreting it in terms of areas.
\(\int_0^{10} | x - 5|dx\)
On what interval is the curve \({\rm{y = }}\int\limits_{\rm{0}}^{\rm{x}} {\frac{{{{\rm{t}}^{\rm{2}}}}}{{{{\rm{t}}^{\rm{2}}}{\rm{ + t + 2}}}}} \)concave downward?
Evaluate the integral by interpreting it in terms of areas:
\(\int\limits_{{\rm{ - 1}}}^{\rm{2}} {{\rm{(1 - x)dx}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.