Chapter 5: Q19E (page 306)
Evaluate the indefinite integral\(\int {{e^x}\sqrt {1 + {e^x}} dx} \)
Short Answer
The indefinite integral value of the given equation is\(\int {{e^x}\sqrt {1 + {e^x}} dx} = \frac{2}{3}\sqrt {{{(1 + {e^x})}^3}} + c\).
Chapter 5: Q19E (page 306)
Evaluate the indefinite integral\(\int {{e^x}\sqrt {1 + {e^x}} dx} \)
The indefinite integral value of the given equation is\(\int {{e^x}\sqrt {1 + {e^x}} dx} = \frac{2}{3}\sqrt {{{(1 + {e^x})}^3}} + c\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral
\(\int\limits_{\rm{1}}^{\rm{2}} {{\rm{(4}}{{\rm{x}}^{\rm{3}}}} {\rm{ - 3}}{{\rm{x}}^{\rm{2}}}{\rm{ + 2x)dx}}\)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{2}} {{\rm{(2x - 3)(4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 1)dx}}} \)
valuate the integralby making the given substitution.
\(\int {{x^3}} {\left( {2 + {x^4}} \right)^5}dx,\;\;\;u = 2 + {x^4}\)
Evaluate the indefinite integral\(\int {\frac{{\sin \sqrt x }}{{\sqrt x }}dx} \)
Evaluate the integrals.
\(\int_{1/\sqrt 3 }^{\sqrt 3 } {\frac{8}{{1 + {x^2}}}} dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.