Chapter 5: Q18E (page 306)
Evaluate the indefinite integral\(\int {\frac{{\sin \sqrt x }}{{\sqrt x }}dx} \)
Short Answer
The indefinite integral value of the given equation is\(\int {\frac{{\sin \sqrt x }}{{\sqrt x }}dx} = - 2\cos \sqrt x + C\).
Chapter 5: Q18E (page 306)
Evaluate the indefinite integral\(\int {\frac{{\sin \sqrt x }}{{\sqrt x }}dx} \)
The indefinite integral value of the given equation is\(\int {\frac{{\sin \sqrt x }}{{\sqrt x }}dx} = - 2\cos \sqrt x + C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is wrong with the equation?
\(\) \(\int\limits_{ - 1}^3 {\frac{1}{{{x^2}}}dx = \left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)_{ - 1}^3 = - \frac{4}{3}} \)
Evaluate the integral.
\(\int\limits_{\rm{0}}^{\rm{3}} {{\rm{(1 + 6}}{{\rm{w}}^{\rm{2}}}{\rm{ - 10}}{{\rm{w}}^{\rm{4}}}{\rm{)dw}}} \)
Evaluate the indefinite integral\(\int {u\sqrt {1 - {u^2}} du} \).
Evaluate the integral by interpreting it in terms of areas:
\(\int\limits_{{\rm{ - 1}}}^{\rm{2}} {{\rm{(1 - x)dx}}} \)
Use Property 8 to estimate the value of the integral.
\(\int_1^2 {\frac{1}{x}} dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.