Chapter 5: Q16E (page 309)
\(\int\limits_0^2 {(x - {x^3})dx} \)represents the area under the curve \(y = x - {x^3}\) from \(0\;to\;2\).
Short Answer
The given statement is TRUE.
Chapter 5: Q16E (page 309)
\(\int\limits_0^2 {(x - {x^3})dx} \)represents the area under the curve \(y = x - {x^3}\) from \(0\;to\;2\).
The given statement is TRUE.
All the tools & learning materials you need for study success - in one app.
Get started for freeTo evaluate the integral \(\int_{ - 5}^5 {\left( {x - \sqrt {25 - {x^2}} } \right)} dx\) by an area interpretation.
Evaluate the integral by interpreting it in terms of areas:
\(\int\limits_{{\rm{ - 1}}}^{\rm{2}} {{\rm{(1 - x)dx}}} \)
Find the average value of the function \(g(x) = \cos x\)in the interval \(\left( {0,\frac{\pi }{2}} \right)\)
Evaluate the indefinite integral\(\int {\frac{{\sin \sqrt x }}{{\sqrt x }}dx} \)
Evaluate the indefinite integral\(\int {{{\sec }^2}2} \theta d\theta \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.