Chapter 5: Q16E (page 289)
Evaluate the integral.
\(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)
Short Answer
The value of \(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)is\(1 - \frac{{\sqrt 3 }}{3}\).
Chapter 5: Q16E (page 289)
Evaluate the integral.
\(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)
The value of \(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)is\(1 - \frac{{\sqrt 3 }}{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral.
\(\int_1^2 {\left( {\frac{x}{2} - \frac{2}{x}} \right)} dx\)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{2}} {{\rm{(2x - 3)(4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 1)dx}}} \)
What is wrong with the equation?
\(\) \(\int\limits_{ - 1}^3 {\frac{1}{{{x^2}}}dx = \left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)_{ - 1}^3 = - \frac{4}{3}} \)
Evaluate the indefinite integral\(\int {\frac{x}{{{{\left( {{x^2} + 1} \right)}^2}}}} dx\).
Evaluate the integral by making the given substitution.
\(\int {\frac{{{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{(1/x)}}}}{{{{\rm{x}}^{\rm{2}}}}}} {\rm{dx,}}\;\;\;{\rm{u = 1/x}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.