Chapter 5: Q16E (page 309)
Evaluate the integral if exists.
\(\int_{\rm{0}}^{\rm{1}} {{\rm{sin}}} {\rm{(3\pi t)dt}}\)
Short Answer
The required solution of the integral is\(\int_0^1 {\sin } (3\pi t)dt = \frac{2}{{3\pi }}\).
Chapter 5: Q16E (page 309)
Evaluate the integral if exists.
\(\int_{\rm{0}}^{\rm{1}} {{\rm{sin}}} {\rm{(3\pi t)dt}}\)
The required solution of the integral is\(\int_0^1 {\sin } (3\pi t)dt = \frac{2}{{3\pi }}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\int_0^9 f (x)dx = 37\) and \(\int_0^9 g (x)dx = 16\), find\(\int_0^9 {(2f(} x) + 3g(x))dx\)
Evaluate the integrals.
\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)
To prove the statement \(\int_a^b f ( - x)dx = \int_{ - b}^{ - a} f (x)dx\) and draw a diagram to interpret this equation geometrically for \(f(x) \ge 0\) and \(0 < a < b.\)
Evaluate the integral by interpreting it in terms of areas:
\(\int\limits_{{\rm{ - 1}}}^{\rm{2}} {{\rm{(1 - x)dx}}} \)
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.