Chapter 5: Q15E (page 309)
If f is continuous on (a, b), then \(\frac{d}{{dx}}\left( {\int\limits_a^b {f(x)dx} } \right) = f(x)\)
Short Answer
The given statement is FALSE.
Chapter 5: Q15E (page 309)
If f is continuous on (a, b), then \(\frac{d}{{dx}}\left( {\int\limits_a^b {f(x)dx} } \right) = f(x)\)
The given statement is FALSE.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the given integral.
\(\int\limits_{ - 1}^2 {\left( {x - 2\left| x \right|} \right)dx} \)
Evaluate the integral by making the given substitution.
\(\int {{{\rm{x}}^{\rm{2}}}} \sqrt {{{\rm{x}}^{\rm{3}}}{\rm{ + 1}}} {\rm{dx,}}\;\;\;{\rm{u = }}{{\rm{x}}^{\rm{3}}}{\rm{ + 1}}\).
Given that \(\int_0^1 3 x\sqrt {{x^2} + 4} dx = 5\sqrt 5 - 8\), what is \(\int_1^0 3 u\sqrt {{u^2} + 4} du?\)
Evaluate the indefinite integral\(\int {\frac{{\sin \sqrt x }}{{\sqrt x }}dx} \)
If \(f\) is continuous and \(\int_0^9 f (x)dx = 4\), find \(\int_0^3 x f\left( {{x^2}} \right)dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.