Chapter 5: Q13E (page 308)
. \(\int\limits_0^3 {{e^{{x^2}}}dx\; = \;\int\limits_0^5 {{e^{{x^2}}}dx + \int\limits_5^3 {{e^{{x^2}}}dx} } } \)
Short Answer
The answer is TRUE.
Chapter 5: Q13E (page 308)
. \(\int\limits_0^3 {{e^{{x^2}}}dx\; = \;\int\limits_0^5 {{e^{{x^2}}}dx + \int\limits_5^3 {{e^{{x^2}}}dx} } } \)
The answer is TRUE.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the average value of the function \(f(x) = \frac{1}{x}\) in the interval \({\rm{(1,4)}}\).
Evaluate the integral.
\(\) \(\int\limits_{\rm{0}}^{\rm{4}} {{\rm{(3}}\sqrt {\rm{t}} {\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt}}} \)
Evaluate the integral
\(\) \(\int\limits_{{\rm{ - 1}}}^{\rm{1}} {{\rm{t(1 - t}}{{\rm{)}}^{\rm{2}}}{\rm{dt}}} \)\(\)
Evaluate the integral.
\(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)
Evaluate the indefinite integral.
\(\int x \sin \left( {{x^2}} \right)dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.