Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\int_0^1 {y{{\left( {{y^2} + 1} \right)}^5}dy} \)

Short Answer

Expert verified

Integrate the function,

\(\begin{aligned}{c}\int_0^1 {y{{\left( {{y^2} + 1} \right)}^5}dy} {\rm{ }} &= \frac{1}{2}\left. {\left( {\frac{{{u^6}}}{6}} \right)} \right|_1^2\\ &= \frac{1}{{12}}\left( {{2^6} - {1^6}} \right)\\ &= \frac{{21}}{4}\end{aligned}\)

Step by step solution

01

Use the substitution rule for integration

Let \(u = {y^2} + 1\)

Then,\(du = 2ydy\)

\( \Rightarrow dy = \frac{{du}}{{2y}}\)

02

New limits of integration for \(u\)

\(u = \left\{ \begin{array}{l}{\rm{2 , if }}x = 1,\\{\rm{1 , if }}x = 0\end{array} \right.\)

03

Substitute \(u\) to the function \(\int_0^1 {y{{\left( {{y^2} + 1} \right)}^5}dy} \)

\(\begin{aligned}{c}\int_0^1 {y{{\left( {{y^2} + 1} \right)}^5}dy} &= \int_1^2 {\frac{{{u^5}}}{2}du} \\ &= \frac{1}{2}\int_1^2 {{u^5}du} \end{aligned}\)

04

Use the integral formula \(\int_1^2 {{x^n}dx}  = \frac{{{x^{n + 1}}}}{{n + 1}} + C\)

\(\left. { = \frac{1}{2}\left( {\frac{{{u^6}}}{6}} \right)} \right|_1^2\)

05

Use the integral formula \(\int_a^b {f\left( x \right)dx}  = F\left( b \right) - F\left( a \right)\)

\(\begin{aligned}{c} &= \frac{1}{{12}}\left( {{2^6} - {1^6}} \right)\\ &= \frac{{63}}{{12}}\\ &= \frac{{21}}{4}\end{aligned}\)

Therefore, the value is \(\frac{{21}}{4}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free