Chapter 5: Q13E (page 289)
Evaluate the integral.
\(\int_1^2 {\left( {\frac{x}{2} - \frac{2}{x}} \right)} dx\)
Short Answer
The value of \(\int_1^2 {\left( {\frac{x}{2} - \frac{2}{x}} \right)} dx\)is\(\frac{3}{4} - 2\ln 2\).
Chapter 5: Q13E (page 289)
Evaluate the integral.
\(\int_1^2 {\left( {\frac{x}{2} - \frac{2}{x}} \right)} dx\)
The value of \(\int_1^2 {\left( {\frac{x}{2} - \frac{2}{x}} \right)} dx\)is\(\frac{3}{4} - 2\ln 2\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function \(F(x) = \int_x^{10} {\tan } \theta d\theta \) using Part 1 of the Fundamental Theorem of Calculus.
Find the average value of the function \(g(x) = \cos x\)in the interval \(\left( {0,\frac{\pi }{2}} \right)\)
Evaluate the integralby making the given substitution.
\(\int {{{\cos }^3}} \theta \sin \theta d\theta ,\;\;\;u = \cos \theta \)
Evaluate the integral.
\(\int_0^{1/\sqrt 3 } {\frac{{{t^2} - 1}}{{{t^4} - 1}}} dt\).
Evaluate the indefinite integral\(\int {\frac{x}{{{{\left( {{x^2} + 1} \right)}^2}}}} dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.