Chapter 5: Q13E (page 306)
Evaluate the indefinite integral\(\int {\frac{{dx}}{{5 - 3x}}} \).
Short Answer
The indefinite integral value of the given equation is\(\int {\frac{{dx}}{{5 - 3x}}} = - \frac{1}{3}\ln (5 - 3x) + c\).
Chapter 5: Q13E (page 306)
Evaluate the indefinite integral\(\int {\frac{{dx}}{{5 - 3x}}} \).
The indefinite integral value of the given equation is\(\int {\frac{{dx}}{{5 - 3x}}} = - \frac{1}{3}\ln (5 - 3x) + c\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral.
\(\int_0^{\pi /3} {\frac{{\sin \theta + \sin \theta {{\tan }^2}\theta }}{{{{\sec }^2}\theta }}} d\theta \)
Evaluate the indefinite integral\(\int {\frac{{{{(\ln x)}^2}}}{x}} dx\).
Use Property 8 to estimate the value of the integral.
\(\int_1^2 {\frac{1}{x}} dx\)
Evaluate the indefinite integral\(\int {\sqrt {\cot x} {{\csc }^2}xdx} \).
Use Property 8 to estimate the value of the integral.
\(\int_0^2 {\sqrt {{x^3} + 1} } dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.