Chapter 5: Q10E (page 308)
\(\int\limits_{ - 5}^5 {(a{x^2} + bx + c)dx = 2\int\limits_0^5 {(a{x^2} + c)dx} } \)
Short Answer
The answer is TRUE.
Chapter 5: Q10E (page 308)
\(\int\limits_{ - 5}^5 {(a{x^2} + bx + c)dx = 2\int\limits_0^5 {(a{x^2} + c)dx} } \)
The answer is TRUE.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of function \(y\) using the Part 1 of the Fundamental Theorem of Calculus.
\(y = \int_{\sin x}^1 {\sqrt {1 + {t^2}} } dt\)
Find the derivative of the function \({g^\prime }(s)\), using part 1 of The Fundamental Theorem of Calculus and integral evaluation.
\(g(s) = \int_5^s {{{\left( {t - {t^2}} \right)}^8}} dt\)
Find the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).
Use Property 8 to estimate the value of the integral.
\(\int_1^2 {\frac{1}{x}} dx\)
Evaluate the indefinite integral\(\int {{{\sec }^2}2} \theta d\theta \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.